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Abstract. The properties of the collective excitation and the motion of solitons originates in 
the inner local fluctuation and deformation of the structure of molecules in the organism, 
and protein has been discussed utilizing an analysis of inner excitation in the molecule and 
the sound oscillation caused by neighbouring correlation effects between molecules by 
considering the anomalous correlation interaction in this system. These new results show 
that the Davydov theory is only an approximate theory. 

1. Introduction 

Recently, different excitations of the collective types of solitons, e.g. the Davydov 
soliton, and their motion in quasi-periodic molecular systems consisting of weakly 
interacting identical molecules (groups of atoms) and a-helical protein molecular chains 
was studied using the Davydov theory by Davydov and co-workers [l-61, Scott and co- 
workers [7-101 and Pang [ll-131, Careri et al [14], Takeno [15] and Wang et al [16] for 
example. This is a very important and intriguing problem. It is used to explain many 
biological phenomena, e.g. the contraction mechanism of animal muscles, at the mol- 
ecular level. However, how correct is this model? What problems does it have? What 
are the limitations of the theory? These questions have not been discussed systematically 
yet. In this paper, the theory is studied by a new method in the following two sections. 

2. Collective excitation and soliton motion in organic protein molecules 

It is known that the Davydov soliton arises because of the local fluctuation and deform- 
ation of structure in the molecular system by means of the resonance interaction between 
these molecular groups or the dipole-dipole interaction due to a change in inner energy 
or applied excitation of light and electromagnetic field, etc. In this case, the inner 
excitation caused by motion of the excess electrons in the molecule and the sound 
oscillation of the molecules caused through the neighbouring correlation effect between 
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molecules occurred. To analyse the features for these models of motion, we may use the 
following Hamiltonian in the organic molecular system [17]: 

H = H, + H ,  + Hi,,. (1) 

H, is the Hamiltonian of the sound oscillation caused by the localized deformation in 
this molecular system. It is of the form 

where Ri is the displacement of the ith molecule from its equilibrium position. /3 is ‘the 
elasticity coefficient’ of this molecular chain. Meanwhile, we assume that each cell has 
only a molecule with mass M here. 

H ,  is the Hamiltonian of the inner excitation of the molecule by using Frohlich’s 
model of a small polaron. It is of the form 

where p is the mass of the polarized particle generated by inner excitation in the 
molecule. oi and CO: are the diagonal and non-diagonal elements of the dynamical 
matrix. wo is the Einstein frequency. ipw:r,rl + is the dispersion part of the longitudinal 
phonon caused by the neighbouring interaction between molecules in molecular 
vibration. rl andp,  = p i ,  are the normal coordinates of the ith oscillator in the molecule 
and its canonically conjugate momentum, respectively. This interaction between the 
oscillators and molecular lattice surely exist because of the local fluctuation and deform- 
ation of structure in this system. We take the Hamiltonian of this interaction to be of the 
form 

Hint = i C, P X ~ ( R ~  + 1 - R I  - + pX2(Rr + 1 - ~i ) r i r i  + 1 (4) 
I I 

where 2x1 = do;/dR,  and 2x2 = dw:/dR, are the change in the vibrating energy of 
molecular lattice and the coupling interaction between neighbouring molecules by unit 
extension. 

Adopting the canonical second quantized method, 

r, = (2ywo/h)-1/2(b1 + b:) p f  = [( f i /2)p~oI”2(-I)(bl  - bi+) ( j  = V 7 )  
( 5 )  

where b, is the excitation operator of a molecule of number i. 
Substituting equation ( 5 )  into equations (3) and (4), we then have 

no: 
i i 2w0 

Hp = E h  wo(b:b; + h )  - h C, - (b:bj + 1 + b:+ 1bi + b:b:+ 1 + bjbj + 1) 
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The equation of motion of operator bj in the Heisenberg representation may be 
found from equations ( l ) ,  (6) and (7) to be of the form 

jfidkt) = [bdt), H I  = hwobdt) - (6w:/4wo>(bf+ + bf'+ 1) 

- (fiw:/40">(bf- 1 + bf+- 1) + (fi/2%)Xl(Rf+ 1 - Rf - 1 W f  + bf+) 

+ (f i /2WO)XZKRf+ 1 - R f W f +  1 + b?+ 1) + (Rf - Rf - l)(bf- 1 + bj- 111. 
(8) 

Now we may assume that the trial collective exciting wavefunction of this system 
according to the properties of structure and change in state of the organic molecular 
system is of the form 

iq(t)) = A - l ( l  + 2 i a,b:)IO) (9) 

where A is a factor of the normalization. Writing (q I bflV) = af/I A l 2  and qf = af/A, from 
equations (8) and (9) we can obtain the following non-linear equation of motion: 

jh@f = h w o q  - (hoi/4wo>(qf- 1 + qpf*+ 1) - (fioi/4wd(g7f- 1 + ~ f x -  1) 

+ (hXl/2WO>(Rf+ 1 - Rf - lNVf + 97) 

We adopt classical methods such as that in [ 171 for the part of the deformation in equation 
(l), and, applying equation (9), we then have 

The equation of motion for the molecular lattice vibration from the Hamilton equation 
and equations ( l ) ,  (2) and (11) may be obtained as follows: 

M R  f -  - - (6/6Rf)(qlHIq)=P(Rf+l +Rf-1-2Rf)  

+ (h/2wo)X1(l Tf+ 1 I2 - I Vf - 1 1 2 >  
- (h/2wo)X2[Vpf*(Vf- 1 - qf+ 1) + qf@pf*- 1 - vi+ 111. (12) 

Equations (10) and (12) are two complete equations describing the local intramolecular 
excitation accompanied by the deformation of structure. Obviously, it is different from 
that of Davydov and co-workers [l-61. The reason is the existence of the anomalous 
correlation terms b:b: + bibi and b:b:+ + bibi+ in equation (1). However, if we 
neglect these terms or let q7 = 0, then they can degenegate into the original Davydov 
equations. This shows that our theory has generality. The Davydov theory is only a 
special case of our theory. However, it is very difficult to find the solutions of equations 
(10) and (12). 
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Considering the symmetry of equation (10) and its conjugate equation satisfied by 
p'?, we may make a transformation 

q f  = qp+ q;. (13) 

From equations (10) and (13) we can obtain 

- cif = &f - ("Vf+ 1 - V j -  1) + Xl(Rf+ 1 - Rf- dcpf 

+ X m f +  1 - R f h f +  1 + (Rf - Rf- 1 h f -  11. 

When the inner excitation of the molecule and the sound vibration of the molecular 
lattice are small, we may adopt the continual approximate method. In the one-dimen- 
sional case, it may be represented in the following form: 

qfk = qf a ( d q f / d x )  + (1/2!)a2(a2qf/dx2) t (1/3!)a3(d3qf/dx3) + . , , 
Rfk = Rf k a(aRf/dx) + (1/2!)a2(d2Rf/dx2) 2 (1/3!)a3(d3Rf/ax3) + . . . 
Rf + R ( x ,  t> qf+ cp(x, 0. 
Applying equation (15), and from equations (12) and (14), we can obtain 

- a2q/at* = (0; - u!)q - iw:a* (LPq/dx2) + 2X1u(dR/dx)q 

M(a2Rlat2) = pa2(a2R/ax2) + (hU/U")(Xl + Xz)(a/ax) I qI*. (17) 

Now let us assume that Vaq = a m  determined as the velocity of the longitudinal 
sound wave in this molecular chain. The solutions of this set of equations corresponding 
to the excitation movement along the molecular chain with a velocity V < Vas may be 
looked for in the form 

p ( ~ ,  t )  = -dR/dx = p(x - ut) q ( x ,  t )  = q ( x  - ut). (18) 

Equation (17) thus yields 

where d is a non-determinate constant determined by boundary conditions. 
Substituting equation (19) into equation (16) yields the following equation: 

d2q /d t2  - A(d2q/dx2) + B q  - CI q12q = Ell q12(dq/dx) + FI q(*(a2p'/dx2) (20) 

where 
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Because x 2  << xl, I a I 6 1 in the general case we may approximate up to order a* only, to 
neglect the terms Ell cp I2(dcp/dx) and FI cp(*(d2q/dx2); then equation (20) becomes 

a2cp/dt2 - A(d2cp/8x2) + Bcp - CJ cpl’cp = 0. 

cp = f(5) exp[ iW,  41 

(22) 

(23) 

Now let us assume that the solution of equation (22) is of the form [18] 

(where 8 = Kx - ut and c = x - Vt). k ,  u and Vare some non-determinate constants. 
Substituting equation (23) into equation (22) yields 

&(V - A)(df/d<)’ + a(B + K2 - LO*)? - (c/4)f4 = g. 

We know that the non-determinate integration constant g = 0 from the nature of the 
boundary condition of cp. Thus we have 

(df/df)* - Rf’ + yf4 = 0 

where LY = ( B  + K 2  - u’ ) / (A  - V2) and y = C/4(A - V2). If A > V 2 ,  then its solution 
is of the form 

f(<) = q y  sech[d\/cy(c - C O ) ]  = q y  sech{&[x - xo - V(t - to)]}. (24) 
so 

q = d 4 ( B  + K 2  - 02)/Csech{d(B + K2 - w 2 ) / ( A  - V 2 )  

x [x  - xo - V(t - to)] exp[i(Kx - u t ) ] .  (25) 
This is a non-topological soliton solution which is consistent with the type of solution 
used in [l-131 1q(n, t)12 is shown in figure 1. However, our equation (20) or (22) is 
different from those in [l-131. This is very important. 

From equations (19) and (25), we may obtain 

p = -dR/dX = [ h ( ~ 1  + ~ 2 ) a / M u o ( V &  - V2)] 1’ + d 

= [4ha(~1 + x ~ ) ( B  + K 2  - w2)/Mu;C(V& - V’)] 

x sech2{d(B + K2 - u 2 ) / ( A  - V )  [x - xo - V(t - to)]} + d. (26) 

2 I IP (n ,  t )  I 

no-4 no-2 no no+2 n0+4 

I 

Figure 1. The probability of the distribution 1 q ( n ,  t )  l 2  of internal excitation and change in 
relative distance of molecules. 
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Now let us find the energy of this soliton. The effective Hamiltonian H' contributing the 
energy of this soliton to the total Hamiltonian H is of the following form in the trial 
wavefunction equation (9):  

H' =Eo + T +  U +  C. ( E  - D)bTb; - J C .  (bTb;+l - bjbj.1) 
i i 

+ C X(Ri + 1 - Ri - l)bTb, + I= x'(Rj + 1 - Rj)(bTbj+ 1 + bibif, 1) (27) 
i i 

where 

If we write equation (25) in the following form: 

q = d/1/2L, sech[L;'(X - V t ) ]  exp[i(KX - of)] 

in the continual approximation method, then we can obtain the soliton energy asfollows: 

E = (VI H1 1 v )  = E,  + E - 2J + 2(x + x l ) /P ( l  - S2)  

+ J(P + 1/3Ls) - [4(x  + x')'/w(l - s2)]  (1/3L,) 

+ [2(x  + ~ ' ) ~ ( 1  + s ' ) / w ( ~  - s')] (1/3Ls). (30) 

At all finite values of the energy equation (30) the soliton velocity is less than the velocity 
of the longitudinal sound in a molecular chain. In soft chains (small 0) and in the cases 
when internal excitations are strongly bound to molecular displacements the effective 
soliton mass is very large. So, even at a small velocity of travel the kinetic soliton energy 
may be very high. In the presence of soliton excitation, the molecular chain is locally 
deformed. Since the mass of molecules is large, deformation is preserved during 
radiation. After radiation the local deformation energy dissipates into that of molecular 
vibrations. The radiation maximum corresponds to the frequency v = 
( E  - G)/h ,  where G = ( x  + ~ ' ) ~ / 3 / 3 ' J  is the Stokes shift. This result can explain many 
biological phenomena, e.g. biological radiation of energy, which is well known. 

We may completely apply the above theory to the structure properties of a-helical 
protein, where w o  is the eigenfrequency of the amide-I vibration, and ii, p and i p w l  are 
the normal coordinates of the amide-I vibration of the ith peptide group (ith amide-I 
oscillator), its effective mass and a dipole-dipole interaction force constant between the 
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ith and (i  + 1)th amide-I oscillators, respectively. R,, M and f i  are the longitudinal 
displacement of the ith peptide group, the mass of a peptide group plus residue and the 
force constant of hydrogen bonding, respectively. Thus correspondingly the distribution 
of excitations and the change in distance between peptide groups in each of the three 
chains 0’ = 1,2 ,3)  are characterized, respectively, by the functions q , ( X ,  t )  and p,(X, t )  
satisfying the set of equations 

[d2/dt2 - 1w:a2(d2/dx2) + ( w i  - U:) - 2a(x1 + x2)p,]q, - *(x ,  t )  

= wP/ + 1 ( X >  t> + v, - 1(x, 01 (31) 

(p, = -dR,/dx j = 1,2,3) (32) 

[M(d2/dt2) - Pa2(d2/~x2)lP/(x,  0 = - [ ( X I  + x * ) / w o l ( ~ / ~ x >  19, ( x ,  4 I 2  

where J = hw:/2w0 is the resonance interaction energy of neighbouring peptide groups 
situated along each chain, and L is the resonance interaction energy between the nearest 
neighbouring peptide groups of different chains. 

Applying our method [ll-131, we can obtain from equations (31) and (32) 

Just as in Scott’s [7] method, we study only the case with no bending of the cu-helix. This 
assumption is equivalent to requiring that 

P1 = P2 = P3 = * ( I  qI I*  + I q 2 I 2  + I q3I2)[fi(x1 + x2)a/M(Viq - V2)Oo] + d. (34) 

Therefore equation (33) can be written in vector form as 

(Ptt - AVxx - (C/3)((PPy * (Pk = -z(P (35) 

where 

(P = ( q 1 3  c p 2 .  q 3 I f  .=(E ; ;j 
qtt = a?q/at2 qxx = a 2 q / d X 2 .  (36) 

From the results obtained by Scott [7, 81 and Pang [ll-131, we may assume that its 
solution is of the form 

(P = @exp(-jc 
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Substituting equation (37) into equation (35), through a complicated operation, may 
yield 

@tt - A@xx - C1/@l2@ + 4 = 0 (38) 

where 1 = det[Z + w2Z] and C’ = C/3. 

ively, only where a = (1 + 
Thus equation (38) and its solution are similar to equations (22) and (24), respect- 

- w 2 ) / ( A  - V2) and r = C’/4(A - V2). 

3. Analyses and discussion of the results 

At present, a very important problem is to determine the correct degree for our theory 
and method mentioned above. We shall discuss this in the following. 

Our theoretical results approach the experimental results. Without losing the essen- 
tial features of the problem, we use here a highly idealized model of the a-helix by 
confining ourselves to considering a single chain of peptide groups. Meanwhile, we 
confine ourselves to the case V <  Vaq as well as V <  Vg and, assuming the non-har- 
monicity of the amide-I vibration to be negligibly small, we present the following form 
of a one-soliton solution for a-helical proteins [17, 191: 

q = y o  se~h[q~(3Q~/ ,uC:(K) /3) ’ ’~(na  - ut)] exp[-j(wt - Kna)] (39) 
where the dispersion relation is of the form 

w = [wO(K)’ - (3Q2//3p)~~]I” K = oV/C:(K) 

Q ( ~ P w o / ~ ) ( x  + x ’ )  ( ~ W O / ~ ) X .  (40) 
Now we consider the binding energy of the solitons. For this purpose, we first assume 
that the squared amplitude qi for this soliton is measured in units of the mean square 
displacement 4 of the molecular lattice-free oscillator, i.e. qi = 4 Y .  Then we may 
obtain the binding energy E B ( k )  of this soliton to be in the form 

E,(K) = P(k) - [P(k )2  - 12E”YX2/P]”2 (41) 
where Eo = boo, E”(k) = hwo(k) .  In the above equations, Y is a dimensionless quantity 
yet to be estimated. For the above vibrons in a-helical proteins and also those in 
most molecular crystals, the width w’, of the vibron squared-frequency band w’, = 
[oo(k)l2 - [oO(0)]’ is much too small compared with mi.  Then equation (41) may be 
always reduced approximately to EB(k)  = (6x2/p)Y. The dimensionless factor Y can be 
estimated from the stability conditions of the soliton squared-frequency band that 
[wl(k)12 as a whole should be separated from the vibron squared-frequency band 
[o0(k>]’.  From the formulae and conditions mentioned above, we can obtain 

a(Jp/x2) =s Y =s $(JP/x2>. 

To estimate Y and the binding energy of the soliton, we again adopt the numericalvalues 
of J ,  x and p used in [7-101 as follows: 

J = 7.8 cm-’ = 1.3 x lo4 erg cm-‘ x = 4 x erg cm-’. (42) 
Then the binding energy of the vibron solitons is about 12 cm-’ < EB < 36 cm-’ for the 
moderate value of 0.7 < Y < 1.96. 
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Now we again consider the Davydov theory. Its Hamiltonian is of the form 

HD = H,D + 2 ho,b,?br - JC(b:b,+l + b:+,bl) + X Z ( R , + ~  - R,-,)b: b, (43) 
I r I 

where H p  is still given by equation (2). If we still adopt here the Davydov wavefunction 

I 

and apply the method mentioned above, we can obtain a corresponding equation of 
motion as follows: 

ih(d@‘/dt) + (I/2mD)(d2~D/d~2) - OD@ + gDl@/2(pD = 0. 

qD(X, f) = ($ SeCh[P(mDgD)”*(X - vf)] eXp[ -i(Of - Kx)] 

(45) 

(46) 

Then a one-soliton solution can be obtained as follows: 

(V + VaJ 

where 

8 = a(mDgD)’/2/2 O = O D  + K2/2m, - g’,/16J OD = 00 - 2 J  

E - D = w O  mD = 1/2Ja2 gD = 4x2/m - s2> K =  mDV R = 1. 

(47) 

Here Vis a parameter identified as the soliton velocity. Thus the soliton binding energy 
for the Davydov theory is obtained as follows 

E: = g’,/16J = x4/P2J = 1.13 cm-I. 

It is clear that the soliton binding energy for Davydov theory is much too small compared 
with the result obtained from our theory. 

Until now, there has been no experimental evidence for the existence of a soliton in 
a-helical proteins, in viuo or in uitro. However, evidence for solitons of a similar 
character does exist for acetanilide (CH3CONHC6H5), (ACN) which is an organic solid 
having a structure somewhat similar to the a-helical proteins. In ACN, two close chains 
of hydrogen-bonded amide-I groups run through the crystal. It is an interesting system 
because nearly planar amide groups display bond distances which are close to those 
found in polypeptides. Careri eta/  [9,14] have shown that a band in the infrared spectrum 
that is red shifted by about 15 cm-’ from the amide-I maximum at 1665 cm-’ may arise 
from the amide-I solitons originally suggested by Davydov. We should point out here 
that the frequency shift of 15 cm-’, which can be considered as the binding energy of the 
solitons, lies in the range 12-36 cm-’ of the binding energy obtained above, although 
the numerical values of theJ ,  x and P given in equation (42) may be somewhat different 
from those for ACN, but deviates greatly from the value in the Davydov theory. 

Also the Davydov theory gives the width E, of the energy band of amide-I vibration 
excitations as follows: E,,, = 4J = 31.2 cm-’. It is seen that, with such a small binding 
energy, almost all the soliton energy band merges into the amide-I energy band. In the 
meantime, the binding energies of Davydov solitons take a unique value since their 
amplitude is automatically given, whereas for vibron solitons the soliton amplitude is an 
arbitrary parameter and therefore the soliton binding energy increases as the soliton 
amplitude increases. So the properties of the soliton and its binding energy that we 
obtained are different from those of the Davydov theory. This and the numerical results 
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mentioned above support the advantages and correctnessof our theory over the Davydov 
theory in comparison with experimental data. 

Our soliton solution and corresponding results mentioned above are obtained from 
equation (21) or (33) with neglect of the small terms E1lcp1*(dcp/aX) and 
FI cp I2(d2cp/dx2). We now study this problem further and compare our results with the 
experimental data to show the validity of this method. For this purpose, we introduce 
the maximal exciton group velocity in the linear case for this system; it is of the form 
Vg = (l/V?)wlu. We shall use mostly the data for a-helical rotein, since it is the case 
most cited in the literature [7-10,141, i.e. Vaq = a m ,  /- M / p  - 0.99 x s-l, V -  
0.3733 + 0.0189 m s-', a = 5 X lO-''m, w1 -- lo1* s-'; thus, Vg- lo3 m s-' and we have 
s = V/Vaq -e 1,O. 1 s wJ(p/M)'/* s 1. The data for the velocity Vaq of sound vary greatly. 
Davydov and co-workers use the value Vaq -- 100 m s-'. For this value, the condition, 
Vg * Vaq is satisfied. On the other hand, other workers [7-10,201 quote other values and 
we calculate the value in the range 5 X lo3 m s-l s Vaq S lo4 m s-'. If these values of 
Vaq are relevant, the conditions, Vg 9 V ,  Vaq + V and 0.1 < Vg/Vaq = w, / (p /M) ' /*  s 1 
are obviously satisfied, but the Davydov result is also not fulfilled. These results also 
show that our theory is correct, and that the Davydov theory is an approximate theory. 

However, if the Davydov theory is valid, i.e. we adopt Vaq -- 100 m s-l or Vaq > V ,  
then we should consider further the terms E'l cp 12(acp/ax) and Fl cp 12(d2cp/ax2). In this 
case, we shall solve equation (20). It is very complicated. We may estimate that its 
solution certainly deviates from the Davydov soliton solution. 

Meanwhile, in this case, we shall also adopt the following equations: 

MR E p~~(d~R/d~*) + (ha/wo)(xl + ~2)(d/ax)lq 1' 
+ (fi/6w0)(x, + x2b3(d3Icp 12/dx3) - ( a 2 d a $ )  

- ~ 1 c p ( a 2 l c p  l*/aX*) - 0(d31cp 12/dx3) - ~(a*cp/ax2)(d21cp 12/ax*) 

(48) 

(49) 

= Bcp - A ( d 2 ~ / d ~ 2 )  - C/cp 12cp - E'lcp I2(acp/ax) - Flcp 12(a2cp/d~2)  

instead of equations (17) and (20), where 

N' = 2a4h(x1 + x2)2/6wo(Viq - V2)M 

K = ha6(x1 + X ~ ) X ~ ~ M U ~ ( ) O ( V ~ ~  - V 2 ) .  

Apparently equations (49) and (20), which are very complicated have not been solved 
at present. We can find only the approximate solutions by means of the perturbation 
method. Therefore, the collective excitations for the organism and a-helical protein 
pose a very complicated problem. 

Now, a very important problem is the reasons that led to such a difference between 
the above results of our theory and results of the Davydov theory. Thus, what is needed 
is a clear comparison of the two theories. From a comparison between the Davydov 
theory and our theory the reasons are as follows. First of all, the Hamiltonian and the 
equations of motion describing the system and the properties of motion of the quasi- 
particles are different. In our theory there are the anomalous correlation terms 
b:b: + bib, and b:b:+ + b,b,+ On thecontrary, the Davydov theory has no correlation 
terms. Secondly, a crucial point seems to be the ansatz equation (9) which we believe 
may be the fundamental difference between our work and Davydov's work. We know 
that the Davydov wavefunction is given by equation (44); it is an eigenstate of the 
number operator N = C, b:b,. This describes the state of a single (collective) exciton, 
i.e. the Davydov wavefunction is restricted to the subspace of a single (collective) 

0 = haSx2(x1 + x2)/6MudViq - V2> 
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excitation, N = 1. Therefore, in the Davydov theory a soliton is exactly one exciton 
(spread out over several sites) plus the resulting acoustic deformation. However, our 
wavefunction (equation (9)) is not an eigenstate of the number operator, N = Xi bib,; it 
belongs to a large space with N = 0 , l .  It represents rather a superposition of a state with 
no exciton and a state with one exciton. Let it be represented as 

Obviously, this is a coherent state, i.e. it is a superposition of the state of different 
quanta, the phases of which are the same. So, it is this superposition which leads to the 
anomalous correlation effect. Therefore, it is precisely a collective excitation wave- 
function which can represent exactly the collective excitation in the organic protein 
system. In our theory the soliton contains less than one exciton, this state being a 
coherent superposition of zero plus one ‘inner excitation’. Thus the differences between 
our theory and the Davydov theory lead to the distinctive features of the two theories 
mentioned above. 

Yet, in our theory, if we let cp* = 0, or if the anomalous correlation terms are 
neglected and our wavefunction is reduced to the Davydov wavefunction by subtracting 
the constant A-[, then the equations of motion can also degenerate to the original 
Davydov equations. This shows that our theory has generality, and the Davydov theory 
is a special case of our theory. However, from the results of a study by the present author 
[21,22] and Haken [23], we know that the state of any organic protein or creature is one 
of orderly self-organization. In this state the particles are in co-operative motion. 
Therefore, to adapt the coherent wavefunction (equation (9)), which was used here and 
described the collective excitation, the collective motion and the coherent feature of the 
particles, is pertinent to organic proteins. So the above results obtained by our theory 
are better and more justifiable. For example, the results for the soliton energy indicate 
that our theory is preferable compared with the Davydov solution. 

Lastly we should mention that Kapor and Stojanovic [24] conclude that the appli- 
cation of the continual approximate method in the particular case of the &-helical 
proteins in some data is not well justified (based on the Davydov theory). We think that 
this conclusion is not correct because our theory and the results mentioned above do not 
agree with this conclusion. The continual approximate method is still avery good method 
for a-helical proteins. Kapor and Stojanovic show only that the Davydov theory is an 
approximate theory. 
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